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Abstract

Background

Standardized exercise protocols have been shown to improve overall cardiovascular fitness,

but direct effects on left ventricular (LV) function, particularly diastolic function and relation

to post-transcriptional molecular pathways (microRNAs (miRs)) are poorly understood. This

project tested the central hypothesis that adaptive LV remodeling resulting from a large ani-

mal exercise training protocol, would be directly associated with specific miRs responsible

for regulating pathways relevant to LV myocardial stiffness and geometry.

Methods and results

Pigs (n = 9; 25 Kg) underwent a 4 week exercise training protocol (10 degrees elevation, 2.5

mph, 10 min, 5 days/week) whereby LV chamber stiffness (KC) and regional myocardial stiff-

ness (rKm) were measured by Doppler/speckle tracking echocardiography. Age and weight

matched non-exercise pigs (n = 6) served as controls. LV KC fell by approximately 50% and

rKm by 30% following exercise (both p < 0.05). Using an 84 miR array, 34 (40%) miRs

changed with exercise, whereby 8 of the changed miRs (miR-19a, miR-22, miR-30e, miR-

99a, miR-142, miR-144, miR-199a, and miR-497) were correlated to the change in KC (r�

0.5 p < 0.05) and mapped to matrix and calcium handling processes. Additionally, miR-22

and miR-30e decreased with exercise and mapped to a localized inflammatory process, the

inflammasome (NLRP-3, whereby a 2-fold decrease in NLRP-3 mRNA occurred with exer-

cise (p < 0.05).
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Conclusion

Chronic exercise reduced LV chamber and myocardial stiffness and was correlated to miRs

that map to myocardial relaxation processes as well as local inflammatory pathways. These

unique findings set the stage for utilization of myocardial miR profiling to identify underlying

mechanisms by which exercise causes changes in LV myocardial structure and function.

Introduction

Exercise training has been shown to reduce cardiovascular risk [1] and improve left ventricular

(LV) function [2]. Specifically, exercise training can increase LV ejection fraction (EF) and

reduce resting and exercise heart rate [3, 4]. These effects would imply that improved LV filling

(i.e. diastolic function) as well as LV ejection performance have improved with exercise train-

ing. LV diastolic function is highly dependent upon LV chamber stiffness [5, 6], however, the

direct effects of an exercise training protocol on LV stiffness properties are not well understood

and may be due in part to confounding factors in clinical studies such as comorbidities, differ-

ences in the exercise protocols, and the complexity of measurements. Pigs have been success-

fully utilized for exercise training studies with respect to cardiovascular function [7, 8].

Accordingly, the first goal of the present study was to examine LV function, in particular LV

stiffness properties, in a pig model before and following an exercise training protocol.

MicroRNAs (miRs) constitute an important post-transcriptional regulatory pathway pri-

marily by binding to mRNA transcripts and inhibiting gene expression [9, 10]. Changes in spe-

cific miRs have been reported with exercise training and LV remodeling, but are usually

focused upon a specific miR target or pathway or rely on miR profiles extracted from plasma

or skeletal muscle [11–13]. However, the relationship between changes in LV function and

miR profiles, particularly to that of LV stiffness properties, with exercise training is not well

established. Therefore, the second goal of this study was to utilize a previously established car-

diovascular focused miR array [14] and determine whether and to what degree specific shifts

in myocardial miR profiles occur with exercise training in pigs. This project tested the central

hypothesis that a reduction in LV stiffness properties occur with exercise training and is asso-

ciated with a shift in myocardial miRs that regulate pathways and components which contrib-

ute to changes in LV stiffness.

Methods

Exercise protocol

Yorkshire pigs (3 months, n = 9; Palmetto Research Swine, Reeseville, South Carolina) utilized

were castrated males and for the purposes of this initial study, sex dependent differences in

response to exercise were not considered. Pigs acclimated to the treadmill for seven days prior

to initiating the exercise protocol. Baseline LV echocardiograms were acquired within 4 hours

prior to the initiation of the exercise protocol. Final LV echocardiograms were obtained 4 days

after the completion of the exercise protocol. An additional group of Yorkshire pigs (male, cas-

trated, n = 6; Palmetto Research Swine, Reeseville, South Carolina) of matched age and weight

were included to obtain referent control echocardiographic images as well as LV myocardium

for comparative analysis. All animals were treated and cared for in accordance with the

National Institutes of Health Guide for the Care and Use of Laboratory Animals (Eighth Edition.

Washington, DC: 2011), and all protocols were approved by the University of South Carolina

School of Medicine and WJB Dorn VA Institutional Animal Care and Use Committee. To
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minimize pain and distress the following steps were taken. First, for the non-invasive echocar-

diographic studies, the potential for stress/anxiety was minimized through administration of

oral diazepam (200mg) one hour prior to the imaging procedure and supplemental midazolam

(0.5–0.6mg/kg) administered intramuscularly at the time of the echocardiogram. Second, the

treadmill protocol was performed under the direct supervision of the Attending Veterinarian

(SB, University of South Carolina). Thirdly, the terminal procedures were performed under a

full surgical plane of anesthesia using 5% isoflurane.

LV structure and function

All LV function and subsequent analyses was performed in a blinded analysis and the code

was not broken until full study completion. LV echocardiograms were performed on exercised

pigs during the study (GE Vivid E9 with XDclear Ultrasound System: M5S [1.5 to 4.6 Hz]

transducer probe; GE, Boston, MA). LV dimensions and functions were assessed by 2-dimen-

sional and M-mode echocardiographic studies [15]. From the obtained LV measurements, LV

end-diastolic volume (EDV), end-systolic volume (ESV), and EF were calculated using the

biplane method of disks. LV wall thickness was determined and LV mass computed using con-

ventional formulae [16]. Pulmonary capillary wedge pressure was computed using conven-

tional Doppler methods [17]. Aortic valve pressure gradient was determined by Doppler

ultrasound [18]. Speckle tracking echocardiography (STE) was also performed on the acquired

ultrasound images using established approaches [19]. LV mass and EDV were indexed to body

surface area (BSA) whereby the BSA was determined using a standard approach [20].

LV regional myocardial and chamber stiffness. Using STE on the short-axis view, LV

posterior region circumferential myocardial strain (ε) was computed as:

ε ¼
LED � LES

LES
ð1Þ

where LED and LES refer to the lengths of a circumferentially-oriented segment (within the pos-

terior wall) length at end diastole (ED) and end systole (ES), respectively. Thus, this segmental

measure considers ES as the reference configuration, and reflects a linearized strain measure

to characterize the regional deformation at ED. The mean regional circumferential wall stress

(σθ) at ED was then computed as:

sy ¼
Pr
t

ð2Þ

where P is the LV pressure, r is the LV inner radius, and t is the posterior wall thickness. We

assumed LV pressure at ES was zero and at ED was equivalent to pulmonary capillary wedge

pressure and computed the associated strain and stress values for both LV states. The slope of

the line between these two points (corresponding to ES and ED) in the circumferential stress-

strain plane, developed in posterior region, was used to compute regional myocardial stiffness

(rKm) [21] as:

rKm ¼
sy
ε

ð3Þ

LV chamber stiffness (KC) was computed as:

Kc ¼
PCWP

Volume Strain
ð4Þ

in which volume strain was defined as the difference between EDV and ESV divided by the

ESV.

PLOS ONE Exercise and myocardial miRs

PLOS ONE | https://doi.org/10.1371/journal.pone.0292243 February 2, 2024 3 / 18

https://doi.org/10.1371/journal.pone.0292243


LV sampling

After completion of the protocol, and under a full surgical plane of anesthesia (5% isoflurane),

the LV was harvested and the transmyocardial sections of the posterior region placed in RNA-

later (Qiagen, Valencia, CA) and stored at -80˚C until testing was performed.

miR extraction & profiling

LV samples (30 mg) underwent miR extraction (miRNeasy Mini cat # 217084, Qiagen, Valen-

cia, CA) and the miR pool checked for quality (Agilent RNA 6000 Nano Kit Santa Clara, CA).

The miR pool was then reverse transcribed (miScript II RT HiSpec Kit cat # 218161, Qiagen,

Valencia, CA). This study utilized a custom pig cardiovascular miR array (cat # 331221,

MIHS-113Z, Qiagen, Valencia, CA), which contained 84 individual miRs. The resulting cDNA

from miRs was used for SYBR Green PCR (miScript SYBR Green PCR Kit cat # 218073, Qia-

gen, Valencia, CA). Quantitative RT-PCR was performed (Bio-Rad CFX96 Touch) according

to the vendor protocol. The maximum threshold cycle (CT) for detection was set at 35 CTs. CT

values of the mean for SNORD42B, SNORD69, SNORD61, SNORD68, SNORD96A, and

RNU6-6P were used as reference values for normalization.

Data analysis

LV function and geometry at the beginning and completion of the exercise protocol was first

examined by paired, two-tailed t-tests. Next, LV function and geometry was compared

between age/weight matched referent controls using unpaired, two-tailed t-tests. In the first

level of miR analysis, individual miRs with a greater than or equal to two fold-change values as

a result of exercise and statistically significant miRs were identified (GeneGlobe Data Analysis,

Qiagen, Valencia, CA). The differential expression of individual miRs relative to referent con-

trol was analyzed using the comparative fold-change method [22]. In addition, individual

miRs were clustered with respect to predominant functional pathways structured by a litera-

ture review (S1 and S3 Tables). The association between changes in LV regional and chamber

stiffness to changes in individual miRs was performed using Pearson correlation. All statistical

procedures were performed using SPSS (SPSS Software, Version 27, IBM SPSS) and P values

of< 0.05 were considered statistically significant. Unless otherwise indicated, data are

expressed as means ± SEM.

Results

LV geometry and function

All pigs successfully completed the exercise protocol and a summary of LV function and geom-

etry is shown in Table 1. The values presented include pre-exercise and post-exercise values.

Over the four week exercise protocol, normal weight gain occurred and accordingly, weight

matched untrained referent control pigs were also included in this analysis as shown in

Table 1. Resting heart rate decreased from pre-exercise values post-exercise but was similar to

referent control values. The mean aortic pressure gradient, an index of aortic pressure [23],

was unchanged between referent control and post-exercise values (3.15 ± 0.31 vs 4.02 ± 0.53

mmHg respectively, p = 0.273). LV mass increased following the exercise protocol, with post-

exercise LV mass being higher than referent control values, and was associated with an

increase in LV EDV. When indexed to BSA, the directional changes in LV mass and LV EDV

remained the same. The LV posterior wall thickness (end-diastolic) to EDV ratio was similar

between referent control and post exercise (0.13 ± 0.01 vs 0.12 ± 0.01 mm/mL respectively,

p = 0.461). The likely reason for this index remaining within referent control values is that the
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LV wall thickness and LV volumes increased with the exercise protocol, consistent with con-

centric remodeling [24]. LV EF values were higher post-exercise from both pre-exercise and

referent control values. LV posterior wall thickness increased post-exercise, as did regional ED

strain. Composite plots of LV regional and chamber stiffness are shown in Fig 1, and

Table 1. LV function and geometry: Exercise cohort.

Pre-Exercise Referent Control Post-Exercise

Body Weight [Kg] 16.0 ± 0.5 25.6 ± 0.8* 24.9 ± 0.8*
HR [beats/min] 124 ± 5.2 107 ± 5.5 101 ± 2.8*
LV

LV Mass [g] 69.4 ± 3.8 110.5 ± 5.5* 143.2 ± 6.5*,#

LV Mass-i 154.3 ± 8.9 179.1 ± 6.4 238.2 ± 12.3*,#

LV EDV [mL] 40.9 ± 2.8 54.8 ± 3.1* 67.4 ± 3.3*,#

LV EDV-i [mL/m2] 90.4 ± 5.3 89.2 ± 5.4 111.7 ± 5.1*,#

LV Mass/LV EDV 1.74 ± 0.12 2.05 ± 0.15 2.13 ± 0.06*
LV Wall Thickness/LV EDV [mm/mL] 0.16 ± 0.01 0.13 ± 0.01 0.12 ± 0.01*
LV EF [%] 66.7 ± 1.9 66.4 ± 1.8 82.0 ± 0.7*,#

LV Chamber Stiffness [kPa] 0.56 ± 0.04 0.60 ± 0.06 0.27 ± 0.02*,#

Posterior LV Region

ED Wall Thickness [mm] 6.3 ± 0.3 7.2 ± 0.3 8.3 ± 0.3*,#

ED Circumferential Strain [%] 11.1 ± 1.4 11.9 ± 0.9 15.5 ± 1.3*,#

ED Wall Stress [kPa] 3.1 ± 0.2 3.4 ± 0.3 3.0 ± 0.2

Regional Myocardial Stiffness [kPa] 31.4 ± 3.8 29.1 ± 3.0 20.8 ± 2.3*,#

Sample sizes: Pre-exercise (n = 9); Post-Exercise (n = 9); Referent Control (n = 6).

HR = Heart Rate; BSA = Body Surface Area; EDV = End-Diastolic Volume; EDVi = End-Diastolic Volume Index; EF = ejection fraction; ED = End-Diastolic;

i = indexed to BSA

All values reported as mean ± SEM

*p�0.05 vs pre-exercise
#p�0.05 vs referent control.

https://doi.org/10.1371/journal.pone.0292243.t001

Fig 1. (A) LV regional circumferential stress and strain was measured by speckle tracking echocardiography (STE) in

which values were calculated at the onset of diastole (end-systole) and at end diastole. A rightward and downward shift

in this relation, indicative of a reduction in myocardial stiffness, occurred following the exercise protocol. (B) LV

volumetric strain and pressure during diastole was computed and this relation, which is indicative of LV chamber

stiffness, fell downward and to the right following the exercise protocol. Values shown are composite mean values and

SEM. Summary values for LV regional myocardial stiffness and chamber stiffness are shown in Table 1.

https://doi.org/10.1371/journal.pone.0292243.g001
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demonstrated that both were reduced following the exercise protocol. LV rKm was reduced by

approximately 30% following exercise and LV KC decreased by approximately 50% (Table 1).

miR profiles following exercise

A heat map was generated as a function of referent control values for all of the included miRs

(Fig 2). Several miRs changed following the exercise protocol, and those with statistically sig-

nificant changes or a 2-fold or higher change were selected for further analysis (Table 2).

While it must be recognized that post-transcriptional regulation by individual miRs encom-

passes multiple targets, predominant functional domains relevant to myocardial remodeling

and function can be identified [25, 26]. This approach, and a literature review, was utilized to

generate Table 2 and thus demonstrated shifts in miRs following exercise from several func-

tional domains. A total of 25 miRs were identified as significantly (p<0.05) upregulated (56%)

or downregulated (44%) following the exercise protocol. A cluster of miRs relative to myocar-

dial growth were altered with exercise. For example, miR-199a decreased with exercise and has

been identified in past studies to be altered with LV hypertrophy [27]. Although there was an

even split between positive and negative fold change values within the miRs assigned to the

functional domain for myocardial growth, two miRs in particular, miR-19a and miR-144, had

large, significant fold decreases in expression following exercise (Table 2). Another cluster of

miRs increased with exercise and have been associated with changes in LV myocardial extra-

cellular matrix (ECM) growth and accumulation. Specifically, miR-214 and miR-155 had

3-fold increases in expression and have been previously identified as regulators of cardiac

fibrosis [28, 29]. In addition, a number of miRs associated with inflammation were altered

with exercise including miR-155 and miR-206, both of which were identified for their potential

roles as circulatory biomarkers in inflammatory cardiomyopathy [30].

In order to examine the relationship between the miRs that changed with exercise (Table 2)

with changes in LV regional myocardial stiffness and chamber stiffness, a correlation analysis

was performed (S2 Table). A total of 8 miRs were significantly and positively correlated to

either LV regional or chamber stiffness (Table 3). All 8 miRs decreased with exercise, which

was associated with concomitant reductions in LV stiffness properties. The strongest correla-

tion was observed between miR-142 and LV chamber stiffness. It is noteworthy to recognize

that miR-142 is the only miR identified as having a significant association that does not belong

to the myocardial growth functional group. Finally, miR-30e mapped to several

Fig 2. A heat map was generated for all the miRs utilized in the array, as a function of a fold change from referent

control values. The rows represent individual pig values following the exercise protocol. A number of miRs changed as

a function of exercise within the LV myocardium and were selected for further analysis as indicated in Table 2.

https://doi.org/10.1371/journal.pone.0292243.g002
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metallopeptidases which would also potentially influence ECM structure and function [31].

Specifically, miR-30e likely affects post-transcriptional regulation of the metallopeptidase.

Both miR-99a and miR-497 mapped to heparin sulfate proteoglycans, which have been impli-

cated in myocardial healing and protection [32]. A literature review (S3) was utilized to place

the 8 miRs that correlated to LV stiffness indices and demonstrated regulation of processes

involved in adaptive remodeling such as inflammation, ECM remodeling and calcium han-

dling (Table 4). This study mapped the specific changes in myocardial miR levels to potential

functional domains, identified a relationship to LV diastolic function and, as outlined in the

following paragraph, identified relevance to localized myocardial inflammation.

Table 2. Distribution of miRs with a greater than two fold-change.

miR Fold-Change p-value Differentiation and Development Disease and Dysfunction Growth Injury

ssc-let-7a 2.86 ± 0.68 0.005 x x

ssc-let-7c 2.36 ± 0.66 0.022 x x x

ssc-let-7d 2.61 ± 0.66 0.008 x x

ssc-let-7e 2.68 ± 0.88 0.019 x

ssc-let-7f 3.95 ± 1.37 0.008 x x

ssc-miR-1 3.59 ± 1.64 0.034 x x x x

ssc-miR-15b 2.98 ± 0.75 0.011 x x

ssc-miR-19a -7.63 ± 3.18 0.026 x x x

ssc-miR-22 -3.07 ± 0.92 0.023 x x x

ssc-miR-23a 2.02 ± 1.13 0.106 x x

ssc-miR-23b 2.36 ± 0.99 0.030 x x

ssc-miR-30e -3.28 ± 1.08 0.018 x x

ssc-miR-31 6.96 ± 6.47 0.177 x x x

ssc-miR-98 2.16 ± 0.92 0.032 x x x x

ssc-miR-99a -2.43 ± 0.46 0.002 x x

ssc-miR-124a 17.81 ± 17.18 0.175 x x x x

ssc-miR-133a -2.02 ± 1.00 0.079 x x x x

ssc-miR-142 -23.39 ± 9.91 0.022 x x x

ssc-miR-144 -6.20 ± 2.90 0.031 x x x

ssc-miR-153 -9.49 ± 5.01 0.077 x

ssc-miR-155 3.45 ± 1.69 0.034 x x x

ssc-miR-181b 2.14 ± 0.56 0.021 x x

ssc-miR-182 3.69 ± 2.29 0.110 x x

ssc-miR-199a -2.44 ± 0.67 0.020 x x x

ssc-miR-206 3.36 ± 1.80 0.054 x x x

ssc-miR-208b -3.93 ± 1.71 0.047 x x x

ssc-miR-214 3.71 ± 1.35 0.028 x x x

ssc-miR-320 2.90 ± 0.87 0.022 x x

ssc-miR-338 -3.55 ± 0.99 0.022 x x

ssc-miR-340 -2.13 ± 0.96 0.038 x x

ssc-miR-424 -2.37 ± 1.14 0.094 x x x x

ssc-miR-486 2.59 ± 0.38 0.001 x x

ssc-miR-494 -5.83 ± 3.53 0.063 x

ssc-miR-497 -2.19 ± 0.35 0.001 x x x

Distribution of miRs with a greater than two fold change organized by functional domain from exercised pigs (n = 9). All values reported as mean fold change ± SEM.

https://doi.org/10.1371/journal.pone.0292243.t002
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miR profiles and localized inflammation

Several miRs mapping to local myocardial inflammatory pathways changed with exercise,

which included miR-22 and miR-30e. Past studies have identified shifts in local inflammation

with LV remodeling and exercise training [33–36]. Specifically, studies have identified the

intracellular formation of the inflammasome, notably the NOD-LRR pyrin containing protein

3 (NLRP3), which in turn causes release of cytokine signaling molecules such as interleukin-

1beta (IL1-β) and interleukin-18 (IL-18) [37, 38]. Using miR mapping algorithms (TargetS-

can-http://www.targetscan.org/vert_72/), several of the miRs which changed with exercise

mapped to the NLRP3 inflammasome and its downstream effector proteins IL-1β and IL-18,

including miR-22 and miR-30e. Myocardial mRNA analysis for these localized inflammatory

components was performed using extraction approaches described previously [15]. Briefly,

targeted qPCR was performed using individual primers for NLRP3 (TaQMan,

Ss04953519_m1, ThermoFisher, Waltham, MA), IL-18 (TaQMan, Ss03391203_m1, Thermo-

Fisher), and IL-1β (TaQMan, Ss03393804_m1, ThermoFisher). The maximum threshold cycle

(CT) for detection was set at 35 CTs. The CT value of GAPDH (TaQMan, Ss03375629_u1,

ThermoFisher) was used as the reference gene value for normalization. An approximately

Table 3. Correlation between myocardial miR levels and stiffness indices.

miR Regional Myocardial Stiffness LV Chamber Stiffness

Correlation Coefficient p-value Correlation Coefficient p-value

ssc-let-7a -0.303 0.273 -0.468 0.078

ssc-let-7c -0.422 0.118 -0.492 0.062

ssc-let-7d-5p -0.282 0.309 -0.496 0.060

ssc-let-7e -0.218 0.434 -0.462 0.083

ssc-miR-15b -0.282 0.308 -0.508 0.053

ssc-miR-19a 0.263 0.344 0.543 0.037

ssc-miR-22 0.283 0.307 0.646 0.009

ssc-miR-30e 0.579 0.024 0.671 0.006

ssc-miR-99a 0.515 0.050 0.638 0.010

ssc-miR-142 0.388 0.153 0.814 0.000

ssc-miR-144 0.256 0.399 0.613 0.026

ssc-miR-199a 0.078 0.782 0.575 0.025

ssc-miR-208b 0.156 0.579 0.452 0.091

ssc-miR-320 -0.445 0.096 -0.441 0.100

ssc-miR-486 -0.287 0.300 -0.496 0.060

ssc-miR-497 0.391 0.149 0.726 0.002

https://doi.org/10.1371/journal.pone.0292243.t003

Table 4. miRs with association to LV stiffness indices and functional domain.

miR Inflammation ECM Calcium Handling

ssc-miR-19a x x x

ssc-miR-22 x x x

ssc-miR-30e x x

ssc-miR-99a x

ssc-miR-142 x x x

ssc-miR-144 x x x

ssc-miR-199a x x x

ssc-miR-497 x

https://doi.org/10.1371/journal.pone.0292243.t004
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2-fold down regulation of mRNA levels for NLRP3, IL-1β, and IL-18 was observed following

the exercise protocol (Fig 3). Furthermore, a strong positive correlation was observed between

mRNA levels and LV chamber stiffness for NLRP3 (Spearman’s rho = 0.701, p<0.05), and IL-

1β (Spearman’s rho = 0.643, p<0.05).

Discussion

The overarching goal of the present study was to utilize a pig model of exercise training to

examine LV function, particularly stiffness properties and the relation to changes in myocar-

dial miRs that may be relevant to the regulation of LV structure and function. The new and

unique findings from this study were three-fold. First, a standardized exercise training proto-

col in pigs induced LV hypertrophy as evidenced by increased LV mass, increased LV pump

function as assessed by LV EF, and caused a reduction in both LV myocardial and chamber

stiffness. Second, the exercise regimen caused a shift in the myocardial miR profile, in which a

subset of miRs were moderately-to-strongly associated with LV stiffness properties. These

miRs mapped to regulation of active relaxation (calcium handling) or to the ECM, both of

Fig 3. Fold change with steady state myocardial mRNA levels for components of the inflammasome.

NLRP3 = NOD-LRR pyrin containing protein 3; IL-18 = interleukin 18; IL-1β = interleukin 1 beta. Values are

presented as fold change mean ± SEM. *p< 0.05 vs referent control. IL-18 p = 0.083.

https://doi.org/10.1371/journal.pone.0292243.g003
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which contribute to LV stiffness. Third, a subset of miRs which mapped to local inflammation

were identified to change with exercise, and in particular the local inflammasome (NLRP3)

pathway. The exercise protocol reduced myocardial NLRP3 expression. Taken together, these

findings identified key miRs which influence LV form and function following an exercise pro-

tocol and may serve as a biomarker signature for evaluation of exercise efficacy.

LV stiffness properties and exercise

While past studies have identified the potential benefits of a structured exercise regimen, partic-

ularly in patients with pre-existing cardiovascular conditions [39–45], the mechanistic under-

pinnings with respect to changes in LV structure and function remain unclear. The

HF-ACTION clinical trial established that in patients with heart failure, a reduction in all cause-

mortality could be achieved with exercise training [45]. In another clinical study, chronic heart

failure patients underwent 2 weeks of in-hospital exercise followed by six months of home-

based exercise [39]. In this study, resting HR was significantly reduced, LV mass increased, and

resting LV EF and EDV were significantly improved in the exercise group- all similar findings

to our present study. In a large clinical study of patients without a diagnosis of heart failure,

increased physical activity was associated with reduced cardiovascular outcomes, suggestive of

improved LV function [46]. However, extrapolation of the findings from the present study to a

clinical context may be problematic. Specifically, the present study utilized a training protocol

in young pigs in the absence of cardiovascular disease. Nevertheless, the unique findings of the

present study provided a relationship betweeen a functional (LV stiffness properties) outcome

and a molecular response (shifts in miRs) with an exercise protocol.

One of the underlying factors for exercise intolerance, an indication of heart failure, partic-

ularly in the absence of significant coronary artery disease, is impaired LV diastolic function

due to increased LV stiffness properties [43]. However, clinical studies which have examined

the effects of exercise and LV stiffness properties, both at the chamber and myocardial level,

are limited. This is due to in part to problematic issues of outpatient based exercise programs

and imaging modalities. In a small clinical study, patients with LV hypertrophy and evidence

of increased LV filling pressures were randomized to a high-intensity exercise protocol and LV

chamber stiffness was computed using LV EDV and pressure estimates [44]. At the conclusion

of the year-long study LV chamber stiffness was reduced by approximately 50% in the exercise

group, but was unchanged in sedentary controls. In another clinical study [47], the same

group demonstrated that an exercise program could attenuate the progressive increase in LV

chamber stiffness- an all too common consequence of aging and a sedentary lifestyle. While

these clinical studies demonstrated a positive impact on LV chamber stiffness with a structured

exercise program, the underlying contributory mechanisms for these effects remained unclear.

LV chamber stiffness is determined by a summation of active and passive processes during

diastole [48]. Specifically, impairment in active relaxation processes (i.e. calcium handling and

myofilament interactions) will increase LV chamber stiffness. Changes in myocardial structure

(such as ECM) influence passive stiffness properties, most commonly measured by LV myo-

cardial stiffness. In the present large animal study a chronic exercise protocol reduced LV

chamber stiffness as well as myocardial stiffness. These results imply that a contributory mech-

anism for the reduction in LV chamber stiffness observed in past clinical reports in an exercise

protocol is due, at least in part, to a reduction in LV myocardial stiffness. The present study

also established that a post-transcriptional mechanism for this reduction in myocardial stiff-

ness was a reduction in specific miRs which regulate ECM and inflammation.

Several previous studies used large animal models of exercise, but were primarily focused

upon mechanisms contributing to LV pump function and contractility [7, 8, 49, 50]. In one
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study, progressive treadmill training in pigs resulted in increased myofilament force produc-

tion and computed myocardial power [7]. In another study, exercise training in pigs was

shown to shift calcium myofilament sensitivity and also change active relaxation kinetics [51].

The relevance of these past studies to the present study are three-fold. First, these past studies

identified increased myocyte/myofilament contractility and thus a likely contributing factor

for the increased LV pump function observed in the present study following a treadmill exer-

cise protocol. Second, these past studies identified shifts in calcium myofilament sensitivity

and improved active relaxation and are likely contributing factors for the reduction in LV

myocardial stiffness observed in the present study following the exercise protocol. Thirdly, as

detailed in the subsequent section, the present study identified shifts in miR profiles that map

to key factors in calcium handling and sensitivity and represent a potential molecular mecha-

nism contributing to improved myocyte and myofilament function reported in past studies

following an exercise protocol.

LV myocardial miRs and exercise

Previous human studies evaluating miR levels following exercise training primarily include

miR levels taken from peripheral blood samples of elite athletes with years of training experi-

ence [12, 52] or populations with pre-existing conditions such as heart failure or cancer [14,

53, 54]. There are limited studies of healthy populations that have quantified miR levels follow-

ing exercise training focused upon a pre-selected, restricted number of miRs taken from

peripheral blood samples [11, 55–57]. In a study of sedentary but otherwise healthy adults

(HERITAGE Family Study) [58], we examined plasma miR profiles before and after 20 weeks

of a cycle ergometer based exercise training protocol. There were discordant findings between

our past study and the present study with respect to certain miRs. Specifically, in the 20 week

exercise protocol, no changes in let-7c, miR-181b, miR-23b, miR-320, and miR-98 were

observed, whereas the present study identified increased LV myocardial levels of these miRs.

In another study, plasma levels of miR-1 and miR-486 were increased in endurance athletes

compared to healthy controls [59]. These observations are consistent with the findings from

the present study in which increased myocardial levels of miR-1 and miR-486 were observed

following a treadmill-based exercise training protocol in pigs. However, as stated previously,

direct comparisons between this large animal exercise study to that of past exercise studies in

humans may be problematic.

To our knowledge this is the first study to quantify myocardial miR profiles in a pig model

of treadmill-based exercise. Previously, pigs have been utilized to quantify miR profiles in

other organs [60, 61] and as a large animal model of exercise [62], but studies implementing

both miR profiling and exercise are lacking. Studies utilizing other large animal models such

as horses or dogs to quantify miR profiles following exercise included either training for the

purposes of weight loss in overweight animals [63] or single bouts of exercise [64]. However,

several studies have utilized rodents to examine changes in miRs with respect to a defined

exercise training protocol [65–68]. For example, an 8 week treadmill protocol caused an

increase in myocardial levels of miR-1 and miR-206 in mice [67]. Using a swimming training

protocol in rats, decreased myocardial levels of miR-208b and miR-133a were reported [65,

68]. The directional changes in myocardial miRs reported in these past studies are similar to

those observed in the present study in which a large, cardiac-focused miR array was utilized.

The present study identified a cluster of 8 miRs which were correlated with LV stiffness

properties, and while this does not imply a cause-effect, these miRs did map to relevant path-

ways which could affect LV stiffness (Table 4). For example, miR-144 and miR-142 exhibit

post-transcriptional control of calcium/calmodulin serine protein kinases, which in turn
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would affect calcium handling within the cardiomyocyte [69]. This in turn would affect LV

active relaxation, an important component which contributes to overall LV chamber stiffness.

In addition, miR-144 mapped to a critical pathway which affects ECM structure and composi-

tion: TGF-β [70]. Changes in TGF- β signaling, particularly through the SMAD signaling cas-

cade, can directly alter collagen synthesis. Specifically, SMAD-7 has been shown to exert an

inhibitory effect on the TGF intracellular signaling cascade [71, 72]. Since miR-144 levels

decreased with the exercise training protocol, then this may have altered TGF- β activation,

and thus in turn reduced LV myocardial collagen accumulation, a key component of LV myo-

cardial stiffness.

LV myocardial inflammation and exercise

A localized inflammatory cascade, defined as the inflammasome, has received recent attention

in the context of LV myocardial structure and function [33, 34]. Specifically, the NLRP3

inflammasome has been shown to be activated in the context of ischemia and related LV dys-

function [73]. In the present study, several miRs (miR-22, miR-30e, miR-140, miR-199a, miR-

210 and miR-497) which either map to or correlate with the NLRP3 inflammasome were

altered within the LV myocardium following the treadmill exercise protocol. In fact, a strong

correlation was observed between NLRP3 and the downstream effector, IL-1β, with LV stiff-

ness. In a past study miR-146a was shown to be mechanistically linked to NLRP3 in the context

of spinal cord injury [74]. In hepatic fibrosis miR-21 negatively regulated a key transcription

factor necessary for NLRP3 expression [75]. Finally, in dendritic cells, miR-155 has been iden-

tified to negatively regulate components of the inflammasome cascade [76]. Taken together,

results from previous studies and the current investigation suggest that a treadmill exercise

protocol directly affects key myocardial miRs which in turn regulate the myocardial inflamma-

some. However, it must be recognized that the post-transcriptional regulation of the inflam-

masome is complex and different miRs may interfere with this process at multiple

intersections.

In the present study, a specific pattern of miRs associated with localized inflammation such

as the inflammasome, were altered with exercise training in pigs. Exercise-induced inhibition

of the activation of the NLRP3 inflammasome and downstream effectors IL-1β and IL-18 has

been reported in mice [77, 78]. In a limited number of clinical studies, a reduction in indices

of inflammasome activation have been reported following a chronic exercise protocol [79, 80].

However, the underlying mechanisms by which a reduction in the inflammasome, such as

NLRP3, occurs as a function of exercise is poorly understood. The present study identified that

specific miRs, such as miR-30e, may be important in the post-transcriptional regulation of the

inflammasome. Moreover, the present study suggests that profiling a specific cassette of miRs

may provide a basis for identifying a beneficial effect of a prescribed exercise training program

on localized inflammation. Past studies have examined the effects of exercise training on

plasma miR profiles and our group has associated these changes with myocardial structure-

function [11–14, 30, 52–59, 81]. However, the present study quantified myocardial miR levels

following a specific exercise protocol and whether and to what degree these observations can

be translated to plasma, and more importantly to patients following an exercise training proto-

col, will require future study.

Study limitations and summary

While the present study utilized a large animal model to examine LV function, particularly LV

stiffness properties, and the relationship to myocardial miR profiles, there are several study

limitations which must be recognized. First, the utilized training protocol, while standardized,
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did not perform oxygen saturation and consumption measurements, and therefore the relative

periods of aerobic and anaerobic exercise was not determined. Second, the exercise protocol

was performed in normal pigs and whether and to what degree this protocol can be utilized in

the context of ischemia and pressure overload cardiac pathologies remains to be determined.

Third, the pigs utilized in this study were 3 months of age and would be considered young

since the age for sexual maturity is 5 months of age [82]. In addition, the pigs utilized in this

study were castrated, which removes sex as a covariate in these studies. Nevertheless, this large

animal model of chronic exercise did allow for assessing relevant measures of LV function,

such as LV stiffness properties, which can be problematic in rodent models. Fourth, the pres-

ent study quantified myocardial miRs using a large array using pre-specified normalization

algorithms in terms of the total miR pool and referent normal values. This makes direct com-

parisons to past studies which utilized plasma samples problematic. Nevertheless, this is the

first study to demonstrate a direct relationship between LV stiffness properties (both at the

chamber and myocardial level) to shifts in the abundance of myocardial miRs, as well as to

localized myocardial inflammation following a standardized exercise regimen. These findings

may set the stage for translational studies which utilize a specific miR signature to identify

exercise efficacy.
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